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Abstract

Motivation: Human immunodeficiency virus type 1 (HIV-1) genome integration is closely related to

clinical latency and viral rebound. In addition to human DNA sequences that directly interact with

the integration machinery, the selection of HIV integration sites has also been shown to depend on

the heterogeneous genomic context around a large region, which greatly hinders the prediction

and mechanistic studies of HIV integration.

Results: We have developed an attention-based deep learning framework, named DeepHINT, to

simultaneously provide accurate prediction of HIV integration sites and mechanistic explanations

of the detected sites. Extensive tests on a high-density HIV integration site dataset showed that

DeepHINT can outperform conventional modeling strategies by automatically learning the genom-

ic context of HIV integration from primary DNA sequence alone or together with epigenetic infor-

mation. Systematic analyses on diverse known factors of HIV integration further validated the bio-

logical relevance of the prediction results. More importantly, in-depth analyses of the attention

values output by DeepHINT revealed intriguing mechanistic implications in the selection of HIV in-

tegration sites, including potential roles of several DNA-binding proteins. These results established

DeepHINT as an effective and explainable deep learning framework for the prediction and mechan-

istic study of HIV integration.

Availability and implementation: DeepHINT is available as an open-source software and can be

downloaded from https://github.com/nonnerdling/DeepHINT.

Contact: lzhang20@mail.tsinghua.edu.cn or zengjy321@tsinghua.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Integration of the HIV-1 genome to human genome is a crucial step

in viral infection and replication cycle. Clinically, the integration of

HIV is closely related to the formation of latent viral reservoir and

the rebound of viral load when antiretroviral therapy (ART) is inter-

rupted (Wong et al., 1997). Furthermore, recent studies have also
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revealed that the integration of HIV provirus within specific genes

can affect the persistence of infected cells (Maldarelli et al., 2014;

Wagner et al., 2014), indicating a more significant role of the selec-

tion of HIV integration sites in disease progression.

Despite the long-lasting research efforts, the detailed mecha-

nisms and functional implications of the selection of HIV integration

sites still remains largely unclear (Lusic and Siliciano, 2017). In add-

ition to the local sequence motifs of the human genome that directly

interact with the DNA integrase (Serrao et al., 2014), previous

researches have also associated the preference of HIV integration

events with various genomic landmarks, e.g. the binding of integrase

cofactor LEDGF/p75 (Ciuffi et al., 2005), actively transcribed genes

(Schröder et al., 2002), intron regions (Singh et al., 2015), chroma-

tin accessibility (Vijaya et al., 1986) and nuclear landscape (Marini

et al., 2015). To integrate diverse genomic features for predicting

HIV integration sites, several computational methods have been

proposed (Berry et al., 2006; Santoni et al., 2010). However, these

methods strongly rely on explicit feature engineering and input from

various experimental data, e.g. RNA-seq, ChIP-seq and DNase-seq

data, which may not be universally available for all the integration

prediction tasks. In addition, the sequence resolution and the scope

of feature engineering also limit the interpretation of mechanistic

insights from these methods, leading to the insufficient usage of cur-

rently available large-scale HIV integration data (Shao et al., 2016).

Nowadays, in computational biology, deep learning has become

the state-of-the-art prediction methods in many applications, e.g.

identification of nucleotide-protein binding sites (Alipanahi et al.,

2015; Zhang et al., 2015), prediction of the functional effects of

noncoding sequence variants (Quang and Xie, 2016; Zhou and

Troyanskaya, 2015) and translation process modeling (Zhang et al.,

2017a,b). On the other hand, despite the superior prediction per-

formance, the explainability and the understanding of feature organ-

izations of deep learning models often lag behind, which not only

limits the applicability of deep learning techniques in exploring un-

known cellular mechanisms and gaining insights, but also raises po-

tential concerns of using a black box. One possible strategy to

increase the explainability of deep learning models is the introduc-

tion of attention mechanisms, which are particularly designed to ex-

tract important regions of input data by training an additional

neural network that learns the relative importance of each input pos-

ition from local features (Bahdanau et al., 2014). Thus, when

applied to analyze the genomic sequence data, the introduction of

attention mechanisms is expected to reveal important sequence posi-

tions that shape the prediction results from the deep learning frame-

work and thus provide potentially important mechanistic insights

about the observed genomic phenomena (Deming et al., 2016; Mao

et al., 2017; Pan and Yan, 2017; Singh et al., 2017).

Here, we have developed an attention-based deep learning

framework, named DeepHINT (Deep learning for HIV

INtegraTion) (Fig. 1), for accurately predicting HIV integration sites

by automatically extracting important features and genomic posi-

tions from primary DNA sequences alone or together with epigenet-

ic information. The validation and analysis results showed that the

DeepHINT model with DNA sequence as input alone (denoted by

DeepHINT seq) can possess sufficient prediction power and provide

important biological implication, demonstrating the learning ability

of deep learning in extracting useful sequence features from the con-

text of HIV integration sites. In addition, DeepHINT is flexible to

incorporate other types of genomic data, such as H3K36me3 ChIP-

seq, (denoted by DeepHINT seqþH3K36me3), which further

boosted the prediction power and facilitated a better identification

of attainable positions from the genome context. Our work

represents the first attempt to model the selection of HIV integration

sites by deep learning approaches. Extensive tests have shown that

DeepHINT can achieve an accurate prediction performance and

outperform the current state-of-the-art prediction methods that lev-

erages way more experimental data. The biological relevance of the

DeepHINT prediction results has also been validated by the associa-

tions with known genomic markers of HIV integration. More im-

portantly, the information derived from the incorporated attention

mechanism clearly indicates the relative importance of each position

in the input genomic context of the predicted HIV integration sites,

which can thus help us to explain both local and distal genetic fea-

tures captured by the deep learning model. In particular, our predic-

tion results highlight the potential roles of several DNA-binding

proteins, which may expand our current understanding of HIV inte-

gration site selection. All these results have demonstrated the effect-

iveness of our deep learning based prediction approach and also

provided useful insights to facilitate the mechanistic studies of the

HIV integration process.

2 Materials and methods

In this section, we will describe the details of our deep learning

model for HIV integration site prediction. For simplicity, in the text

we mainly focus on the DeepHINT model with sequence informa-

tion as input alone. We also provide a stepwise mathematical de-

scription of the model architecture and the training process in the

Supplementary Notes to facilitate a better understanding of our

deep learning model.

2.1 Feature extraction by a convolutional neural

network
DeepHINT first employs multiple convolution-pooling modules to

automatically learn informative sequence features in the surround-

ing sequences of HIV integration sites (Fig. 2a). In particular, we

Fig. 1. Schematic overview of the DeepHINT pipeline. In our prediction task,

we used experimentally derived HIV integration sites as positive samples. To

account for potential bias caused by enzyme digestion in the sequencing pro-

cess, matched random control sites possessing the same distance distribu-

tion to the nearest enzyme digestion sites were generated as negative

samples. See the main text for more details

2 H.Hu et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/bty842/5116142 by U

niversity of C
alifornia, R

iverside user on 14 D
ecem

ber 2018



first extend each HIV integration site both upstream and down-

stream by 1000bps to obtain the sequence context, resulting in a se-

quence profile denoted by s ¼ ðnt1; :::; nt2000Þ, where nti stands for

the nucleotide at the ith position. Each nucleotide in the sequence

profile is then converted to a binary vector of length 4 by one-hot

encoding, with each dimension corresponding to a nucleotide type.

In the convolutional layer, a series of one-dimensional convolution

operations are performed over the 4-channel input data, in which

each channel corresponds to one dimension of the binary vector. In

particular, each convolution operation corresponds to a weight

matrix (i.e. kernel) that can also be regarded as a position weight

matrix (PWM).

More specifically, given a genomic sequence s ¼ ðnt1; :::; nt2000Þ
and the corresponding one-hot encoded representation E, the convo-

lutional layer computes X ¼ convðEÞ, i.e.

Xk;i ¼
Xp�1

j¼0

X4

l¼1

Wk;j;lEl;iþj; (1)

where 1� i� 2000� pþ 1; 1� k� d, p is the kernel size, d is the

kernel number andW is the kernel weights. Next, we apply the recti-

fied linear activation function (ReLU) on the convolution results,

which mimics the biological neuron activation. After convolution

and rectification, the max-pooling operators are used to perform di-

mension reduction. Therefore, through a series of convolution-

pooling modules, the sequence profile can be compiled to a d�q

feature map matrix (denoted by Fc), where q represents the total

(pooled) positions of the input sequence (Fig. 2b).

2.2 Incorporation of the attention mechanism
To better capture and understand the positional importance of the

sequence context, we further introduce an attention layer into our

model (Fig. 2a). The attention layer takes the feature vector after

convolution-pooling operations as input, and then computes a score

indicating whether the neural network shall pay attention to the se-

quence features at that position. Basically, column j of the feature

map matrix Fc can be viewed as a feature vector (denoted by vj) that

describes the features of the jth position in the input sequence, with

each dimension corresponding to a kernel in the convolutional layer.

The attention layer feeds each input feature to a shared feedforward

neural network with a single hidden layer. The output of the atten-

tion layer is an importance score, denoted by ej, for which a larger

value indicates that the corresponding position is more important

for the contribution to final HIV integration site prediction.

In particular, the columns of the feature map matrix Fc are further

averaged by taking the normalized importance scores aj as weights,

resulting in a dense feature representation Fa, i.e.

Fa ¼
Xq

j¼1

ajvj; (2)

aj ¼ exp ðejÞ
Xq

t¼1

exp ðetÞ
; (3)

where ej is the importance score output by the shared neural net-

work and aj is the corresponding normalized score.

To integrate the features captured by the convolution-pooling

modules (i.e. Fc) and the attention mechanism (i.e, Fa), we first con-

catenate all the values in matrix Fc and linearly project them to one

value (denoted by Sc) that represents the contribution from a unified

representation of the whole sequence. Finally, we concatenate Sc

with the dense representation Fa and then feed them together to a lo-

gistic regression classifier to obtain a prediction score that indicates

the probability of HIV integration. In summary, the full model can

be expressed as

PredðsÞ ¼ sigmðconcatðFa; ScÞÞ; (4)

in which s denotes the genomic context of a candidate integration

site and

Sc ¼ denseðpoolðconvðencodeðsÞÞÞÞ; (5)

where encode(�), conv(�), pool(�), concat(�), dense(�) and sigm(�) rep-
resent the one-hot encoding, convolution, max pooling, concaten-

ation, dense and sigmoid operations, respectively. Meanwhile, given

a specific input sequence, we can also output a weight vector

(denoted as AttMap)

AttMapðsÞ ¼ ða1; :::; aqÞ; (6)

which expresses the model’s attention on each position of the input

sequence.

2.3 Model training
After hyperparameter calibration (Supplementary Notes and

Supplementary Table S1), the deep neural network of DeepHINT is

trained by minimizing the binary cross-entropy loss function, which

is defined as the sum of negative log likelihood, i.e.

(a) (b)

Fig. 2. The deep learning framework implemented in DeepHINT. (a) The overall schematic view of the deep learning framework. (b) The illustration of attention

mechanism. See the main text for more details
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loss ¼ �
X

i

log ðyiPredðsiÞ þ ð1� yiÞð1� PredðsiÞÞÞ; (7)

where yi stands for the true binary label of an input sequence si. The

standard error backpropagation algorithm (Rumelhart et al., 1986)

and the batch gradient descent method (Bengio, 2012) are imple-

mented for training. We also introduce several regularization techni-

ques, including adding max-norm constraints on kernel weights

(Srebro et al., 2005), dropout (Srivastava et al., 2014) and early

stopping (Bengio, 2012), to alleviate the potential overfitting prob-

lem. In addition, to better address the data imbalance problem (i.e.

the number of negative samples is much larger than that of positive

samples) and make full use of the excessive negative sample infor-

mation, we also apply an bootstrapping-based training strategy

(Wallace et al., 2011; Zhang et al., 2017b). Specifically, in parallel,

we train the deep neural network for 16 times with an equal number

of randomly sampled (with replacement) positive and negative sam-

ples from the original training set. This strategy results in an ensem-

ble of deep neural network classifiers, whose prediction scores and

attention maps are then averaged to give the final output, i.e.

DeepHINTScoreðsÞ ¼ 1

16

X16

i¼1

PrediðsÞ; (8)

AttMapðsÞ ¼ 1

16

X16

i¼1

AttMapiðsÞ; (9)

where PrediðsÞ and AttMapiðsÞ represent the prediction score and

the output attention map of a single deep neural network for a given

input sequence s, respectively.

The attention-based deep neural network of DeepHINT has

been implemented using the Keras library 2.0.8 (https://keras.io),

and one GTX 1080Ti GPU has been used to accelerate the training

and testing processes. Using such a hardware setting, the

training and testing process for each model of DeepHINT takes

34min and 140 s using our training and testing set, respectively.

3 Results

3.1 DeepHINT accurately predicts HIV integration sites
We have performed extensive tests on known HIV integration sites

in the HEK293T cell line (Singh et al., 2015) obtained from the

Retrovirus Integration Database (Shao et al., 2016) and found that

DeepHINT can significantly outperform the other state-of-the-art

models in predicting HIV integration sites. As the experimental de-

termination of HIV integration sites involved a restriction enzyme

(MSEI) digestion step that may lead to bias in the sequence context,

matched random control sites were generated as negative samples

following the same protocol described previously (Berry et al., 2006;

Santoni et al., 2010; Singh et al., 2015; Wang et al., 2007). More

specifically, we first determined the genomic distances between all

the positive samples to their nearest MSEI sites and then randomly

sampled nine times more matched control sites that had the same

distance distribution to their nearest MSEI sites as the negative sam-

ples. Note that the number of negative samples was set to be ten

times as many as positive samples to reflect the natural imbalance of

integration versus non-integration sites. To facilitate the training

and evaluation process of our model, the whole dataset was sepa-

rated into strictly non-overlapping training and testing sets by chro-

mosomes. Specifically, samples on chromosomes 1, 2, 3 were

assigned to the test set, while the samples from the remaining chro-

mosomes were used as the training set. Overall, the aforementioned

protocol resulted in 743 465 and 214 019 positive samples for train-

ing and test sets, respectively, as well as a corresponding ten times

larger set of negative samples. The final prediction performance was

evaluated and reported based on the test data.

We first compared our method with a conventional position

weight matrix (PWM) based method, namely Score20 (Berry et al.,

2006) (Supplementary Notes), which directly calculates the consist-

ency of the �10 toþ10bp window of a given site of interest with

the consensus motif generated from training data. That is, Score20

mainly focuses on the local sequence motifs that favor HIV integrase

binding and the window size has been confirmed to generate a satis-

factory choice (Supplementary Fig. S1). Expectedly, by efficiently

integrating a much broader genome context of HIV integration,

DeepHINT achieved a great improvement over Score20, with an in-

crease of the area under the precision recall (AUPR) curve by 18.3%

and the area under the receiver-operating characteristic (AUROC)

curve by 7.3% (Fig. 3a and b).

On the other hand, as also shown in the previous studies (Berry

et al., 2006; Santoni et al., 2010; Singh et al., 2015), the surrounding

genomic features, e.g. chromatin accessibility, histone markers, tran-

scription unit and intron annotation, also possess certain predictive

information for detecting the retrovirus integration sites. Therefore,

(a) (b)

Fig. 3. Prediction performance on the test dataset. (a–b) Comparison of prediction performance of DeepHINT with that of different baseline methods, in terms of

(a) receiver-operating characteristic (ROC) curves and (b) precision recall (PR) curves, respectively. ‘DeepHINT seq’ denotes the DeepHINT framework with DNA

sequence alone as input, while ‘DeepHINT seqþH3K36me3’ denotes the DeepHINT framework with DNA sequence as well as H3K36me3 ChIP-seq data as input.

‘preDeepHINT’ denotes the DeepHINT seq framework without using the attention mechanism. The ‘Genomic features’ mean the genomic profiles collected from

the ENCODE project and ChIP-Atlas (see Supplementary Notes)
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to test whether DeepHINT can sufficiently capture the genome con-

text of HIV integration sites, we also compared its prediction per-

formance to that of a random forest based model which explicitly

required these additional surrounding genomic features as input,

both with and without incorporating the Score20 values represent-

ing the local DNA sequence features (Supplementary Notes). In par-

ticular, the following experimentally measured genomic profiles

were used as input to this random forest based model, including the

ChIP-seq data of H3K27Ac, H3K36me3, H3K4me1, H3K4me3,

H3K9me3, RNA polymerase (Pol) II and CTCF, DNase-seq data, as

well as transcription unit and intron unit labels derived from RNA-

seq data (Supplementary Notes and Supplementary Table S2). We

found that the random forest based model solely built on the above

genomic features performed poorly (Fig. 3a and b), with an AUPR

score of 24.2% and an AUROC score of 73.6%, indicating a neces-

sity to effectively integrate various genomic context information

with the Score20 values in the modeling process. Intriguingly, al-

though the integration of these additional genomic data did boost

the prediction performance of Score20, DeepHINT still outper-

formed the random forest model by 6.5% in AUPR and 2.4% in

AUROC (Fig. 3a and b). Note that such a comparison was biased to

the random forest model as DeepHINT only took DNA sequence as

input while the random forest model was fed with plenty of add-

itional experimental data that have been shown to correlate with

HIV integration.

To confirm the above results, we also implemented two other

machine learning models, i.e. logistic regression and gradient boost-

ing decision tree (GBDT), which showed similar performance with

random forest (Supplementary Table S3). Also, to exclude the possi-

bility of introducing noise by combining multiple features (Santoni,

2013), we also compared the prediction of individual genomic fea-

tures and confirmed the superior performance of our model

(Supplementary Table S4). All these results demonstrated that the

deep learning framework employed in DeepHINT can effectively

learn the hidden feature representations encoded in the primary

DNA sequences surrounding the HIV integration sites. Notably, we

found that without using the attention mechanism, the prediction

performance dropped significantly, with a decrease of 9.9% in

AUPR and 3.7% in AUROC, which validated the contribution of at-

tention mechanism to final prediction results of DeepHINT (Fig. 3a

and b).

While the DNA sequence alone already generated good predic-

tion performance, we further attempted to incorporate the cell type

specific information in our framework. Here, we chose to use

H3K36me3 as the information source as it has been shown to be

the best single predictor among all the epigenetic profiles in our ana-

lysis (Supplementary Table S4). Expectedly, the incorporation of

H3K36me3 further improved the prediction performance of

DeepHINT, especially in terms of the precision recall curve,

achieving an AUPR score of 58.5% and an AUROC score of 90.4%

(Fig. 3).

To alleviate potential concerns about using a large number of

low-frequency integration sites with substantial overlapping se-

quence context, we also constructed an additional high frequency in-

tegration dataset and tested the performance of different methods

(Supplementary Notes and Supplementary Fig. S2). Also, the scal-

ability of the DeepHINT model regarding the input sequence length

and the number of training samples were evaluated (Supplementary

Fig. S3). Moreover, a series of statistical analyses were performed to

show the associations between the DeepHINT prediction scores and

experimentally derived genomic features, further supporting the

biological relevance of its prediction results (Supplementary Notes

and Supplementary Fig. S4).

3.2 DeepHINT seq indicates important sequence

positions for predicting HIV integration sites
The involvement of attention mechanism opened up the black box

of deep learning and further enabled us to probe the derived atten-

tion map for each sample. Here we first try to test how DeepHINT

model can learn the importance of features at individual positions

with DNA sequence information as input alone. We hypothesize

that the positions with larger attention values are more likely to as-

sociate with the sequence determinants of HIV integration site selec-

tion. Therefore, we were particularly interested in focusing on the

attention intensive regions (which were defined as those the genomic

positions possessing the highest 5% attention values of an input se-

quence) and examining how they can reflect the underlying biologic-

al mechanisms of HIV integration. Note that due to the convolution

(whose kernel size was set to 6) and max pooling (whose pool size

was set to 3) operations, each position in the attention map (also

called the attention map index) represented an 8-bp region consist-

ing of three continuous convolution kernels.

As a first attempt, we performed a close-up inspection for the

distribution of the attention intensive regions near the integration

sites for all positive and negative samples in the test dataset

(Fig. 4a). Intriguingly, we observed a distinct pattern in the distribu-

tions of attention intensive regions between positive and negative

samples. In particular, the distribution of attention intensive regions

in positive samples showed a clear peak-valley-peak pattern near the

integration sites, which, on the other hand, was not observed in

negative samples. Such a discrepancy indicated that the attention

map derived from our deep learning model was able to reflect the

local sequence specificity pattern in the genomic context of HIV in-

tegration. Next, we further compared the above pattern derived

from the attention intensive regions with the local consensus se-

quence motif obtained from the Score20 method, and found that the

shape of the attention profile aligned well with the conserveness of

each nucleotide in the Score20 motif (Fig. 4a and b). In particular,

the sequence windows corresponding to attention map indexes 1

and 4, which included the most conservative G11 and C15 nucleoti-

des in the Score20 consensus motif, showed the highest attention

scores. On the other hand, the ‘attention valley’ in the observed at-

tention profile also matched the non-conservative region in the

Score20 motif (i.e. sequence windows corresponding to indexes 2

and 3). In addition, we also compared the distributions of attention

values assigned to the Score20 regions (i.e. with attention map

indexes 1 and 4) of integrations sites with either positive or negative

Score20 values (Supplementary Fig. S5). Expectedly, the integration

sites with a weaker Score20 motif (i.e. with negative Score20 values)

tended to possess lower attention values (P < 10�100 by two-sided

Wilcoxon rank-sum test), indicating different molecular features

within the genomic context and thus suggesting the possibility of

being selected by other possible mechanisms. A representative ex-

ample of integration sites possessing the attention intensive regions

near the integration site can be found in Supplementary Figure S6.

Given the great improvement in the prediction performance of

DeepHINT over the Score20 method (Fig. 3a and b), we were inter-

ested in how DeepHINT learns the sequence features beyond the

Score20 region. Therefore, we further examined the associations of

attention intensive regions with diverse genomic profiles, and

showed that the important genomic positions indicated by the
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attention mechanism can provide more mechanistic insights into the

integration process. In particular, we assessed how much of the gen-

omic feature peaks (i.e. ChIP-seq peaks) within the 2000-bp context

of an integration site are occupied by the attention intensive regions

(Fig. 4c). Note that here we cannot conclude the importance of each

feature to HIV integration site selection through this analysis be-

cause the comparisons were not between the integration sites and

background sites and we only considered effect of each genomic fac-

tors within the peak regions. Here, we aimed to examine the associa-

tions between attention values and individual genomic features. In

particular, we found that Pol II binding sites exhibited a significant

association with the attention intensive regions, showing a 4.5-fold

of enrichment compared to that of the attention sparse regions. In

addition, the DNase hypersensitive regions also displayed a 1.9-fold

of difference between the attention intensive and sparse regions, fur-

ther supporting the potential ability of DeepHINT to capture the

binding of regulatory factors in the chromatin accessible regions for

HIV integration. In comparison, for the peaks of histone markers,

i.e. H3K36me3, H3K27ac and H3K4me3, which commonly spread

widely across the sequence context of HIV integration, we did not

detect large signal difference between attention intensive and sparse

regions (Fig. 4c), which also indicated the necessity to examine the

more localized genomic features, e.g. sequence motifs, that may be

more easily captured by the attention mechanism. Two representa-

tive examples of the enriched attention aligned with the Pol II bind-

ing and DNase hypersensitive regions can be found in Figure 4d.

3.3 DeepHINT highlights the sequence features for HIV

integration site selection
To further exploit the specific sequence features captured by our at-

tention mechanism, we also conducted a systematic survey on the se-

quence enrichment in those attention intensive regions. More

specifically, we extracted all the 8-bp sequences in the attention in-

tensive regions and calculated the enrichment of the binding motifs

of known mammalian DNA binding proteins using HOMER (Heinz

et al., 2010). Importantly, as the attention values only indicate the

importance of each positions within the input sequence context (i.e.

they are non-negative values serving as the weights for combining all

local features from different positions), they do not indicate whether

a specific sequence motif is enriched or depleted near the integration

sites when compared to the control sites. With reference to the con-

trol sites, we further calculated the odds ratio of being an integration

site regarding the presence or absence each motif uncovered by

DeepHINT and the corresponding P values derived from Chi-square

tests to confirm the specific role of each uncovered sequence motif

in HIV integration site selection (Table 1).

Intriguingly, we identified several important regulatory factors,

whose binding sites showed significant enrichment in the attention

intensive regions (Fig. 5a and b). In particular, we found in the

Table 1. Odds ratio of being integration sites with respect to the

presence of sequence motifs uncovered by DeepHINT

Motif Odds ratio P value

THRb 1.52 <1� 10�300

ZNF711 1.10 9:23� 10�49

BMAL1 1.06 7:58� 10�9

ZFX 1.03 2:69� 10�4

Maz 0.91 2:03� 10�54

Foxo3 0.91 7:48� 10�42

Tgif2 0.86 1:42� 10�117

Note: The presence of each sequence motif was calculated using FIMO

(Grant et al., 2011) with the default setting. P values are calculated by Chi-

square test.

(a)

(d)

(b) (c)

Fig. 4. Attention intensive regions indicate important local features of the predicted HIV integration sites. (a) A local view of the distribution of attention intensive

regions near the integration sites for both positive samples (red) and the matched random control sites of negative samples (black) in the test dataset. The region

overlapping with the Score20 consensus motif is highlighted (orange). Fractions of attention intensive regions were averaged among all the samples and normal-

ized to the mean of all positions. Note that due to the convolution (with kernel size of 6) and max pooling (with pool size of 3) operations, each position in the at-

tention map (termed as the attention map index) represented an 8-bp region consisting of three continuous convolution kernels. (b) The Score20 consensus

motif after being aligned with the average attention profile. The attention window index corresponding to (a) is shown as x-axis and the sequence windows corre-

sponding to each individual indexes are labeled below. The DNA WebLogo is visualized using Seq2Logo (Thomsen and Nielsen, 2012). (c) The fractions of differ-

ent ChIP-seq peaks that are occupied by either attention intensive regions (with the highest 5% attention, pink) or attention sparse regions (with the lowest 5%

attention, gray). (d) Two representative examples illustrating the enrichment of attention intensive regions in Pol II binding and DNase hypersensitive regions.

The visualization was conducted using the IGV browser (Robinson et al., 2011)
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literature that zinc finger protein ZFX (Gazin, 1999) and thyroid

hormone receptor (Hsia and Shi, 2002) have been reported to regu-

late the long terminal repeats (LTRs) mediated transcription.

Similarly, the presence of E box motif, the core binding element of

bHLH transcription factors, in LTRs has also been shown to be

associated with the modulation of gene expression and maintenance

of virus latency (Ou et al., 1994), probably by repressing the expres-

sion of viral proteins (Jiang et al., 2007; Terme et al., 2009).

However, how these binding elements present in the human genome

sequence participate in the regulation of HIV latency still remains

unclear. Despite the necessity of further experimental validation,

our results may provide several possible directions to further explore

cis-regulatory factors in human genome that may contribute to HIV

integration site selection.

In addition, we were also interested in the difference of the at-

tainable regions with different input profiles, i.e. DNA sequence

alone or DNA sequence plus H3K36me3 profiles. Remarkably, al-

though the sequence motif uncovered by the attention mechanism

are largely overlapping with those generated by DNA sequence as

input alone (Fig. 5a and b), we noticed that the most significant

change compared with the sequence-only model was the increase of

A/T rich regions (Fig. 5c). This observation was consistent with as-

sociation between the H3K36me3 marks and LEDGF/p75

(Pradeepa et al., 2012), the most important transcription factor for

HIV binding which prefers to bind at A/T rich regions with its AT

hook motif (Poeschla, 2008). Therefore, we reasoned that the intro-

duction of H3K36me3 signals may push the attention mechanism to

focus more on additional context regions, especially the A/T-rich

regions, to further boost the prediction performance. These results

also indicated the importance of incorporating various sources of in-

formation as well as introducing an attention layer to enhance the

explainability of our deep learning model.

4 Discussion

Despite the long-lasting experimental and computational effort

devoted to study HIV integration (Berry et al., 2006; Brady et al.,

2009; Santoni et al., 2010; Singh et al., 2015), our current under-

standing of the mechanistic implications of HIV genome integration

still remains largely limited. In this study, instead of focusing on the

tedious handcrafted feature engineering, we developed an attention-

based deep learning framework, namely DeepHINT, to automatical-

ly learn the contextual sequence features of HIV integration, and

precisely predict the integration sites. In addition to boosting the

prediction performance, the attention map derived by DeepHINT

can explicitly decode how the deep learning model recognized highly

relevant sequence features at different positions for final prediction,

enabling one to better understand the underlying mechanism of the

HIV integration.

Given the black box nature of deep learning, in this work, we

tried to interpret the DeepHINT prediction results from two differ-

ent aspects. First, through a subgroup analysis, we evaluated condi-

tional effect of each genomic feature on the DeepHINT score, which

can be regarded as a quantification of how likely a specific site tends

to be an HIV integration site (Supplementary Fig. S4). This analysis

was excepted to reflect how much some experimentally derived gen-

omic features are associated with the DeepHINT score and thus en-

hance its biological relevance. Second, to embed the explainability

in our framework, we introduced the attention mechanism, which

has been widely used in the deep learning community to indicate im-

portant positions in the raw input. In fact, these two approaches are

complementary to each other in generating biological insights from

the deep learning framework. In particular, the first approach asso-

ciates each genomic site with a specific score, which can be analyzed

together with any given experimentally derived feature. On the other

hand, by uncovering sequence motifs enriched in the attention inten-

sive regions, we can identify unexpected features that may also play

an important role in HIV integration site selection. However, there

are also limitations in the attention mechanism. In particular, each

attention value corresponds to a specific window in the input se-

quence context, which can only be interpreted as a localized quanti-

fication of the importance. More importantly, since the attention

values only indicate the importance of each position within the input

context, further efforts are still needed to calculate the statistical en-

richment or depletion of each sequence motif uncovered by the at-

tention mechanism to confirm its specific role.

The current study demonstrates a usage of deep learning, espe-

cially with the attention mechanism, for predicting and analyzing

HIV integration sites. Admittedly, the further explorations of the

underlying mechanisms of HIV integration would rely on the gener-

ation of more high-quality HIV integration sites, especially in

human patients (Maldarelli et al., 2014; Wagner et al., 2014).

Considering the model complexity of deep neural networks, it is al-

ways necessary to collect a large amount of training samples to fully

exploit their prediction power, which in fact can be reflected by the

decreased performance when a limited number of training samples

were used (Supplementary Fig. S3). In addition, the introduction of

effective machine learning techniques, e.g. using transfer learning to

transfer the cell line knowledge to patient samples, will also be an

interesting future direction to pursue. As integration-associated virus

latency is attracting more and more research interest

(Demeulemeester et al., 2015), we believe that our DeepHINT

framework together with more emerging experimental data

(a) (b) (c)

Fig. 5. Attention intensive regions are enriched with known regulatory motifs. The known mammalian motifs obtained from TRANSFAC (Matys et al., 2006) that

were significantly enriched in attention intensive regions are shown. All the motifs showed a Benjamini q-value < 10�4 as determined by HOMER (Heinz et al.,

2010) and further evaluated by Chi-square to show significant enrichment or depletion near integration sites (P value < 10�3). (a) The sequence motifs output by

DeepHINT with DNA sequence alone as input. (b) The sequence motifs output by DeepHINT with DNA sequence plus H3K36me3 ChIP-seq profiles as input.

(c) Comparison of nucleotide composition in the attention intensive regions using different input profiles
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(Shao et al., 2016) and improved experimental techniques (Sherman

et al., 2017) will offer more useful insights into the studies of HIV

integration in the genome.
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